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Fires in enclosures



Fires in enclosures

Supermarket

Entrance open 8-20
Supermarket

Compartment fires

Fires in large enclosures



• Homogenous gas mixture

• Flashover
• Under ventilated fire
• Fast fire development and 

pressure build up
• Perspective fire safety design

• Differences in temperature and 
concentration

• Local flashover, influence of layout
• Openings, leakage
• Slow fire growth

• Performance based design

Supermarket

Entrance open 8-20
Supermarket

Compartment fire vs. fire in large enclosure



Analogy: baking a cake ...

Small cake /
Compartment fire

Big cake /
Fire in large enclosure



The compartment fire



Combustion

fuel + oxygen à water + CO2 + heat
exothermic reaction

Fuels are in:

• Solid, liquid or gaseous phase



Factors influencing fire development in a 
compartment

• Ignition source
• Fuel
• Geometry
• Openings
• Bounding surface



Ignition



Growth phase

Pre-flashover fire
Well ventilated and fuel controlled fire



Fire growth - Spread to additional fuel



Fire growth - Spread to additional fuel

Pre-flashover fire
Well-ventilated and fuel-controlled fire



Flashover



Definition of flashover

Formal definition from ISO:

“transition to a state of total surface involvement in a fire of 
combustible materials within an enclosure”

Indicators:
• 20 kW/m2 heat flux to floor

– Sufficient to ignite common combustibles
• Smoke layer temperature of 500-600oC



More indicators of flashover

• Rapid flame spread through unburned gases at ceiling
• Small number of items burning to most fuels in 

compartment burning
• Transition from fuel controlled burning to ventilation 

controlled
• Flames extending outside compartment openings



Fully developed fire

Post-flashover fire
Ventilation controlled fire



Temperature history in an compartment fire



Temperature history in a compartment fire –
limited oxygen

Fire goes out

The fire resumes



Video: limited oxygen



Temperature history in a compartment fire –
limited oxygen

Fire goes out

The fire resumes

Backdraft



Temperature history in a compartment fire –
limited oxygen

Fire goes out

The fire resumes

Backdraft

Smoke explosion 



The design fire



Design fire

The design fire is affected by a number of factors determined in the preceding 
analysis. To be able to find a design fire, the following input is most often needed: 



Heat release rate

• Fire safety evaluation of a building requires that a number of design fires are 
developed
• These include a prediction of heat release rates (HRR) or “fire curves”
• A “good” measure of the severity of the fire



How do we determine fire curves?

• With natural fires, we do not know the fuel in advance – this is a big problem!
• There are an infinite number of fire scenarios possible for a building
• What are some for this room?

• Only a limited (small) number of fire scenarios reviewed and normally tested in 
fire safety analysis
• Deterministic analysis
• worst credible case

• Probabilistic analysis



How do we determine fire curves?

• With natural fires, we do not know the fuel in advance – this is a big problem!
• There are an infinite number of fire scenarios possible for a building
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• Only a limited (small) number of fire scenarios reviewed and normally tested in 
fire safety analysis
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• Probabilistic analysis

Models

Fire tests / 
statistics

Guidelines / 
building codes



Heat release rate for pool fires

effectivef HtmtAtQ D×¢¢×= )()()( !!
• Rather simple for the free burning case



Heat release rate

=
?

Pool fire Fire in a chair



Heat release rate 

• There are no general models (similar to the pool fire model) to calculate HRR in 
furnishings

• How often will a pool fire be the design fire?

• What shall we do when we cannot use the pool fire model?

Fire tests / 
statistics

Guidelines / 
building codes



Oxygen consumption calorimeter



Sofa: How will it burn?

Source: http://fire.nist.gov/fire/fires/



Sofa: HRR vs. time

Source: http://fire.nist.gov/fire/fires/

α = 0.022 kW/s2

Medium-fast fire



Fire growth rates  Q = at2

a = 0.003 kw/s2

a = 0.012 kw/s2a = 0.047 kw/s2a = 0.19 kw/s2



Fire growth rates, examples



When will the fire stop growing?

• At some point Qmax is reached, what will limit the growth?

• Fuel
• We need to rely on empirical data to estimate Qmax

• Estimate fuel surface and heat release per unit area

• Oxygen
• Effect of the enclosure ventilation

• Suppression



Fuel controlled fire



Ventilation controlled fire

• The maximum mass flow through a opening in a fully developed fire
"̇ = 0.5 ' () *+

• The HRR is governed by the size of the openings

!Qmax =1.518 ⋅ Ao Ho



Gas temperatures



Why is the gas temperature important?

• Life Safety
• Structural fire protection

• Results in vent mass flows
• Spread of smoke away from fire

• Heating of fuel
• Activation of detection systems
• Impact on suppression
• By rescue service or sprinkler system



How can the gas temperature be calculated?

CFD models
• Complex, requires expertise on 

software. Can yield in black box 
syndrome

Two-zone models
• Rather simple, suitable for the 

compartment fire
Hand-calculation methods
• (Too?) simple, suitable for the 

compartment fire

     CFD

  Zone models
 

Hand-calculations
(500 2 / (4*(2 0.5)*0.03*100) ) 1/3= 25



• Method of McCaffrey, Quintiere and Harkleroad
(MQH-correlation) 
• Conservation of energy relation (balance) for a 

ventilated compartment

Pre-flashover temperature
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• Method of McCaffrey, Quintiere and Harkleroad
(MQH-correlation) 
• Conservation of energy relation (balance) for a 

ventilated compartment
• Experiments used to find relationship constants
• Allows simple solution without a computer

Pre-flashover temperature

ΔT = 6.85 )̇*
+, -,ℎ/+0

⁄2 3



Pre-flashover temperature MQH method
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Pre-flashover temperature MQH method

ΔT = 6.85 )̇*
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Double HRR:
58% increase of gas temperature

The role of the ventilation factor



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10

R
el

at
iv

e 
ch

an
ge

in
 g

as
 te

m
pe

ra
tu

re
Relative change in variable

Ventilation factor

HRR

Pre-flashover temperature MQH method

Double HRR:
58% increase of gas temperature
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The role of the ventilation factor



Pre-flashover temperature multi-room
• A relevant scenario in fire safety engineering can often be smoke 

spread to adjacent rooms
• Example, smoke spread to corridor used for as egress route
• Often necessary to use computer models.
• However, a few engineering methods are available

Δ"# = 10.4 *̇+.,- ./,1 2/,1
+.#3

.4,1+.35.4,#+.-- ./,# 2/,#
+.16ℎ8+.-3

Double ventilation factor:
12% decrease of gas temperature



Post-flashover temperature

Method in Eurocode 1 (EN 1991-1-2)
• Temperature curve divide into two parts

• Heating phase

• t* is the modified time, according to:

• t* = t when                                   and

t*= t ⋅ Ao Ho At
kρc
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Post-flashover temperature

Method in Eurocode 1 (EN 1991-1-2)
• Temperature curve divide into two parts

• Heating phase

• Last until correspond to

• Max temperature          is reached when

td =
0.13⋅10−3 ⋅Qt
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Post-flashover temperature

Method in Eurocode 1 (EN 1991-1-2)
• Temperature curve divide into two parts

• Decay phase

Tg = Tg,max − 625 t* − td
*( )                  for  td

* ≤ 0.5

Tg = Tg,max − 250 3− td
*( ) t* − td*( )      for  0.5< td

* < 2

Tg = Tg,max − 250 t* − td
*( )                  for  td

* ≥ 2
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Post-flashover temperature

t*= t ⋅ Ao Ho At
kρc
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Fires in enclosures
Back to where we started:



Fires in enclosures

Supermarket

Entrance open 8-20
Supermarket

Compartment fires

Fires in large enclosures



Fires in large enclosures

How can these be modelled?

CFD models
• Large volume, computationally heavy

Two-zone models
• Outside the model limitations (?)

Hand-calculation methods
• Few or no methods available 

     CFD

  Zone models
 

Hand-calculations
(500 2 / (4*(2 0.5)*0.03*100) ) 1/3= 25



Fires in large enclosures

Flashover might not be relevant

CFD is currently the only real alternative
• If done correctly
• Reasonable results

• Calculation time is long
• Large cells can be used…
• However, the fire needs to be resolved well enough



Questions ?

nils.johansson@brand.lth.se

A demonstration of fire engineering calculations will be done this afternoon


