Fire dynamics in a room and in a multi-room compartment

The key role of ventilation factor

Dr. Nils Johansson

PhD in Fire Safety Engineering Researcher and lecturer at Lund University, Sweden

Previous experience as fire safety consultant

Research interests:

- fire dynamics
- building fires
- fire safety engineering

Agenda

- Fires in buildings
- The compartment fire
- The design fire
- Gas temperatures

Fires in enclosures

Fires in enclosures

Compartment fires

Compartment fire vs. fire in large enclosure

- Homogenous gas mixture
- Flashover
- Under ventilated fire
- Fast fire development and pressure build up
- Perspective fire safety design

- Differences in temperature and concentration
- Local flashover, influence of layout
- Openings, leakage
- Slow fire growth
- Performance based design

Analogy: baking a cake ...

Small cake / Compartment fire Big cake / Fire in large enclosure

The compartment fire

Combustion

fuel + oxygen \rightarrow water + CO₂ + heat exothermic reaction

Fuels are in:

• Solid, liquid or gaseous phase

Factors influencing fire development in a compartment

- Ignition source
- Fuel
- Geometry
- Openings
- Bounding surface

Ignition

Growth phase

Pre-flashover fire Well ventilated and fuel controlled fire

Fire growth - Spread to additional fuel

Fire growth - Spread to additional fuel

Pre-flashover fire Well-ventilated and fuel-controlled fire

Flashover

Definition of flashover

Formal definition from ISO:

"transition to a state of total surface involvement in a fire of combustible materials within an enclosure"

Indicators:

- 20 kW/m² heat flux to floor
 - Sufficient to ignite common combustibles
- Smoke layer temperature of 500-600°C

More indicators of flashover

- Rapid flame spread through unburned gases at ceiling
- Small number of items burning to most fuels in compartment burning
- Transition from fuel controlled burning to ventilation controlled
- Flames extending outside compartment openings

Fully developed fire

Post-flashover fire Ventilation controlled fire

Temperature history in an compartment fire

Temperature history in a compartment fire – limited oxygen

Video: limited oxygen

Temperature history in a compartment fire – limited oxygen

Temperature history in a compartment fire – limited oxygen

The design fire

Design fire

The design fire is affected by a number of factors determined in the preceding analysis. To be able to find a design fire, the following input is most often needed:

	Factors affecting the design fire				
Building characteristics	Dimensions of building				
-	Geometry of building				
	Nature of construction of building (materials and				
	method)				
Enclosure characteristics	Wall and ceiling linings				
	Ventilation conditions (natural or mechanical)				
	Thermal properties of enclosure boundaries				
Environmental conditions	Ambient temperature conditions				
	Ambient air movement				
Fuel characteristics	Fuel type				
	Fuel quantity				
	Fuel location				
	Fuel arrangement				
	Wall and linings				
Design fire scenario	Ignition sources				
	Ignition location				
	Fuel involved in ignition				
	Type of fire growth				
	Unusual fire hazard				
	Events influencing fire growth e.g. window				
	breakage.				

Heat release rate

- Fire safety evaluation of a building requires that a number of design fires are developed
- These include a prediction of heat release rates (HRR) or "fire curves"
 - A "good" measure of the severity of the fire

How do we determine fire curves?

- With natural fires, we do not know the fuel in advance this is a big problem!
- There are an infinite number of fire scenarios possible for a building
 - What are some for this room?
- Only a limited (small) number of fire scenarios reviewed and normally tested in fire safety analysis
 - Deterministic analysis
 - worst credible case
 - Probabilistic analysis

How do we determine fire curves?

- With natural fires, we do not know the fuel in advance this is a big problem!
- There are an infinite number of fire scenarios possible for a building
 - What are some for this room?
- Only a limited (small) number of fire scenarios reviewed and normally tested in fire safety analysis
 - Deterministic analysis
 - worst credible case
 - Probabilistic analysis

Models

Fire tests / statistics

Guidelines / building codes

Heat release rate for **pool fires**

• Rather simple for the free burning case

$$\dot{Q}(t) = A_f(t) \cdot \dot{m}''(t) \cdot \Delta H_{effective}$$

TABLE 3.3 Data for Large Pool ($D > 0.2$ m) Burning Rate Estimates								
Material	Density (kg/m ³)	\dot{m}_{∞}'' (kg/m ² s)	$\Delta H_{\rm c}$ (MJ/kg)	<i>k</i> β (m ⁻¹)				
	Cryogenics							
Liquid H ₂	70	0.017	120.0	6.1				
LNG (mostly CH ₄)	415	0.078	50.0	1.1				
LPG (mostly C ₃ H ₈)	585	0.099	46.0	1.4				
	Alcohols							
Methanol (CH ₃ OH)	796	0.017	20.0	а				
Ethanol (C ₂ H ₅ OH)	794	0.015	26.8	b				

Heat release rate

7 ?

Fire in a chair

Heat release rate

- There are no general models (similar to the pool fire model) to calculate HRR in furnishings
- How often will a pool fire be the design fire?
- What shall we do when we cannot use the pool fire model?

Oxygen consumption calorimeter

Sofa: How will it burn?

Source: http://fire.nist.gov/fire/fires/

Sofa: HRR vs. time

Source: http://fire.nist.gov/fire/fires/

Fire growth rates $Q = \alpha t^2$

Fire growth rates, examples

Description	α [kW/s²]	Test no.	Description	α [kW/s²]	Test no.
Metal wardrobe 41.4 kg (total)	0.422	15	1/8 inch plywood wardrobe w/ fire-ret. (int. fin. later)	1.1722	42
Chair F33 (trial loveseat) 39.2 kg	0.0066	18	Repeat of 1/2 inch plywood wardrobe 67.62 kg	1.1722	43
Chair F21, 28.15 kg (initial stage of fire growth)	0.0344	19	1/8 inch plywood wardrobe w/ fire-ret. latex paint 37.26 kg	0.1302	44
Chair F21, 28.15 kg (later stage of fire growth)	0.04220	19	Chair F21, 28.34 kg (large hood)	0.1055	45
Metal wardrobe 40.8 kg (total, average growth)	0.0169	21	Chair F21, 28.34 kg	0.5210	46
Metal wardrobe 40.8 kg (total, later growth)	0.0733	21	Chair, adjustable back metal frame, foam cushion, 20.8 kg	0.0365	47
Metal wardrobe 40.8 kg (total, initial growth)	0.1055	21	Easy chair CO7 11.52 kg	0.0344	48
Chair F24, 28.3 kg	0.0086	22	Easy chair 15.68 kg (F-34)	0.0264	49
Chair F23, 31.2 kg	0.0066	23	Chair metal frame minimum cushion, 16.52 kg	0.0264	50
Chair F22, 31.9 kg	0.0003	24	Chair moulded fibreglass no cushion 5.82 kg	0.0733	51
Chair F26, 19.2 kg	0.0264	25	Moulded plastic patient chair, 11.26 kg	0.0140	52
Chair F27, 29.0 kg	0.0264	26	Chair metal frame w/padded seat and back 15.5 kg	0.0086	53
Chair F29, 14.0 kg	0.1055	27	Loveseat metal frame w/foam cushions 27.26 kg	0.0042	54
Chair F28, 29.2 kg	0.0058	28	Group chair metal frame w/foam cushions, 6.08 kg	Never exceeded 50 kW	55
Chair F25, 27.8 kg (later stage of fire growth)	0.2931	29	Chair wood frame w/latex foam cushion, 11.2 kg	0.0042	56
Chair F25, 27.8 kg (initial stage of fire growth)	0.1055	29	Loveseat wood frame w/foam cushions, 54.6 kg	0.0086	57
Chair F30, 25.2 kg	0.2931	30	Wardrobe, ³ / ₄ inch particle board, 120.33 kg	0.0469	61
Chair F31, (loveseat) 39.6 kg	0.2931	31	Bookcase plywood w/aluminium frame, 30.39 kg	0.2497	62
Chair F31, (loveseat) 40.4 kg	0.1648	37	Easy chair moulded flexible urethane frame, 15.98 kg	0.0011	64
Chair F32, (sofa) 51.5 kg	0.1055	38	Easy chair, 23.02 kg	0.1876	66
¹ / ₂ inch plywood wardrobe w/ fabrics 68.8 kg	0.8612	39	Mattress and box spring, 62.36 kg (initial fire growth)	0.0086	67
¹ / ₂ inch plywood wardrobe w/ fabrics 68.32 kg	0.8612	40	Mattress and box spring, 62.36 kg (initial fire growth)	0.0009	67
1/8 inch plywood wardrobe w/ fabrics 36.0 kg	0.6594	41			
1/8 inch plywood wardrobe w/ fire-ret. (int. fin. initial)	0.2153	42			

When will the fire stop growing?

- At some point Q_{max} is reached, what will limit the growth?
- Fuel
 - We need to rely on empirical data to estimate Q_{max}
 - Estimate fuel surface and heat release per unit area
- Oxygen
 - Effect of the enclosure ventilation
- Suppression

Fuel controlled fire

TABLE 3.6Energy Release Rate Data

Description	kW/m² of floor area
Fire retarded treated mattress (including normal bedding)	17
Lightweight type C upholstered furniture ^b	170
Moderate-weight type C upholstered furniture ^b	400
Mail bags (full) stored 5 ft high	400
Cotton/polyester innerspring mattress (including bedding)	565ª
Lightweight type B upholstered furniture ^b	680
Medium-weight type C upholstered furniture ^b	680
Methyl alcohol pool fire	740
Heavyweight type C upholstered furniture ^b	79 5 ª
Polyurethane innerspring mattress (including bedding)	910 ^ª

Ventilation controlled fire

• The maximum mass flow through a opening in a fully developed fire

$$\dot{m} = 0.5 \cdot A_o \sqrt{H_0}$$

• The HRR is governed by the size of the openings

$$\dot{Q}_{\rm max} = 1.518 \cdot A_o \sqrt{H_o}$$

Gas temperatures

Why is the gas temperature important?

- Life Safety
- Structural fire protection
- Results in vent mass flows
 - Spread of smoke away from fire
- Heating of fuel
- Activation of detection systems
- Impact on suppression
 - By rescue service or sprinkler system

How can the gas temperature be calculated?

CFD models

- Complex, requires expertise on software. Can yield in black box syndrome
- Two-zone models
 - Rather simple, suitable for the compartment fire
- Hand-calculation methods
 - (Too?) simple, suitable for the compartment fire

- Method of McCaffrey, Quintiere and Harkleroad (MQH-correlation)
- Conservation of energy relation (balance) for a ventilated compartment

- Method of McCaffrey, Quintiere and Harkleroad (MQH-correlation)
- Conservation of energy relation (balance) for a ventilated compartment
- Experiments used to find relationship constants
- Allows simple solution without a computer

$$\Delta T = 6.85 \left(\frac{\dot{Q}^2}{A_0 \sqrt{H_0} h_k A_T}\right)^{1/3}$$

Works well within its bounds of limitations

The role of the ventilation factor

$$\Delta T = 6.85 \left(\frac{\dot{Q}^2}{A_0 \sqrt{H_0} h_k A_T}\right)^{1/3}$$

The role of the ventilation factor

$$\Delta T = 6.85 \left(\frac{\dot{Q}^2}{A_0 \sqrt{H_0} h_k A_T}\right)^{1/3}$$

Double HRR: 58% increase of gas temperature

The role of the ventilation factor

$$\Delta T = 6.85 \left(\frac{\dot{Q}^2}{A_0 \sqrt{H_0} h_k A_T}\right)^{1/3}$$

Double HRR: 58% increase of gas temperature

Double ventilation factor: 21% decrease of gas temperature

Pre-flashover temperature multi-room

- A relevant scenario in fire safety engineering can often be smoke spread to adjacent rooms
- Example, smoke spread to corridor used for as egress route
 - Often necessary to use computer models.
 - However, a few engineering methods are available

$$\Delta T_2 = 10.4 \frac{\dot{Q}^{0.73} (A_{0,1} \sqrt{H_{0,1}})^{0.24}}{A_{T,1}^{0.45} A_{T,2}^{0.33} (A_{0,2} \sqrt{H_{0,2}})^{0.19} h_k^{0.34}}$$

Double ventilation factor: 12% decrease of gas temperature

Method in Eurocode 1 (EN 1991-1-2)

- Temperature curve divide into two parts
 - Heating phase

$$T_g = 20 + 1325 \left(1 - 0.324 e^{-0.2t^*} - 0.204 e^{-1.7t^*} - 0.472 e^{-19t^*}\right)$$

- t* is the modified time, according to: $t^* = t \cdot \left(\frac{A_o \sqrt{H_o} / A_t}{\sqrt{k\rho c}}\right)^2 \left(\frac{1160}{0.04}\right)^2$
- t* = t when $A_o \sqrt{H_o} / A_t = 0.04$ and $\sqrt{k\rho c} = 1160$

Method in Eurocode 1 (EN 1991-1-2)

- Temperature curve divide into two parts
 - Heating phase

• Last until
$$t_d = \left(\frac{0.13 \cdot 10^{-3} \cdot Q_t^{"}}{A_o \sqrt{H_o} / A_t}\right)$$
 correspond to $t_d^* = t_d \cdot \left(\frac{A_o \sqrt{H_o} / A_t}{\sqrt{k\rho c}}\right)^2 \left(\frac{1160}{0.04}\right)^2$

• Max temperature $T_{g,max}$ is reached when $t_d^* = t^*$

Method in Eurocode 1 (EN 1991-1-2)

• Temperature curve divide into two parts

• Decay phase

$$T_{g} = T_{g,\max} - 625(t^{*} - t_{d}^{*}) \qquad \text{for } t_{d}^{*} \le 0.5$$

$$T_{g} = T_{g,\max} - 250(3 - t_{d}^{*})(t^{*} - t_{d}^{*}) \qquad \text{for } 0.5 < t_{d}^{*} < 2$$

$$T_{g} = T_{g,\max} - 250(t^{*} - t_{d}^{*}) \qquad \text{for } t_{d}^{*} \ge 2$$

The role of the ventilation factor

$$t^* = t \cdot \left(\frac{A_o \sqrt{H_o}/A_t}{\sqrt{k\rho c}}\right)^2 \left(\frac{1160}{0.04}\right)^2$$
$$t_d = \left(\frac{0.13 \cdot 10^{-3} \cdot Q_t^{"}}{A_o \sqrt{H_o}/A_t}\right)$$

 $Q''_{t} = 200 \text{ MJ/m}^{2}$ A_t = 200 m²

The role of the ventilation factor

$$t^* = t \cdot \left(\frac{A_o \sqrt{H_o}/A_t}{\sqrt{k\rho c}}\right)^2 \left(\frac{1160}{0.04}\right)^2$$
$$t_d = \left(\frac{0.13 \cdot 10^{-3} \cdot Q_t}{A_o \sqrt{H_o}/A_t}\right)$$

 $Q''_{t} = 200 \text{ MJ/m}^{2}$ A_t = 200 m²

The role of the ventilation factor

$$t^* = t \cdot \left(\frac{A_o \sqrt{H_o}/A_t}{\sqrt{k\rho c}}\right)^2 \left(\frac{1160}{0.04}\right)^2$$
$$t_d = \left(\frac{0.13 \cdot 10^{-3} \cdot Q_t^{"}}{A_o \sqrt{H_o}/A_t}\right)$$

 $Q''_t = 200 \text{ MJ/m}^2$ A_t = 200 m²

Back to where we started:

Fires in enclosures

Fires in enclosures

Compartment fires

Fires in large enclosures

How can these be modelled?

CFD models

- Large volume, computationally heavy
- Two-zone models
 - Outside the model limitations (?)

Hand-calculation methods

• Few or no methods available

Fires in large enclosures

Flashover might not be relevant

CFD is currently the only real alternative

- If done correctly
 - Reasonable results
- Calculation time is long
 - Large cells can be used...
 - However, the fire needs to be resolved well enough

Questions ?

nils.johansson@brand.lth.se

A demonstration of fire engineering calculations will be done this afternoon